
Climate Ocean Modeling on a Beowulf Class System

B.N. Cheng P. Wang
Jet Propulsion Laboratory Jet Propulsion Laboratory

California Institute of Technology California Institute of Technology
Pasadena, CA, U.S.A. Pasadena, CA, U.S.A.

Y. Chao M. Bondarenko
Jet Propulsion Laboratory User Tech Associates, Inc.

California Institute of Technology Pasadena, CA, U.S.A.
Pasadena, CA, U.S.A.

Abstract With the growing power and
shrinking cost of personal computers, the
availability of fast ethernet interconnec-
tions, and public domain software packages,
it is now possible to combine them to build
desktop parallel computers (named Beowulf
or PC clusters) at a fraction of what it
would cost to buy systems of comparable
power from supercomputer companies. This
led us to build and assemble our own sys-
tem, specifically for climate ocean model-
ing. In this article, we present our experi-
ence with such a system, discuss its network
performance, and provide some performance
comparison data with both HP SPP.2000
and Cray T3E for an ocean model used in
present-day oceanographic research.

Keywords: Beowulf, cluster computing, ocean
modeling, parallel programming

1 Introduction

Beowulf class systems consisting of clusters of
off-the-shelf PC’s are becoming a regular fix-
tures in research and industrial computing.
Traditional supercomputers are refrigerator-
size cabinets that contain thousands of micro-
processors. These supercomputers are built
with specialized components and software that
can be operated only by expert technicians
and programmers. These machines usually

have their own cooling systems, require large
amounts of electricity and cost typically more
than $1,000,000. The Beowulf approach repre-
sents a new business model for acquiring com-
putational capabilities, particularly for small
t o medium sized applications. It comple-
ments rather than competes with the more con-
ventional vendor-centric systems-supplier ap-
proach.

At Jet Propulsion Laboratory (JPL), the
ocean modeling group recently decided to build
its own Beowulf system, the first one to built
inhouse, mainly to run our increasingly com-
plex ocean models. This system consists of 13
Intel Celeron Pentium I1 PC’s running at 300
mhz, interconnected by a 100 mbs fast ether-
net network, with a total price of about $26K.
The popular Linux was chosen t o be the op-
erating system, and being publicly available,
enabled much of the needed supporting soft-
ware t o be downloaded from the internet free
of charge. The communicating programming
model of choice was the message passing inter-
face or MPI, due to its portability. The ocean
model to be tested will be based on the Paral-
lel Ocean Program (POP), which has been ex-
tensively used at JPL on the Cray T3D/E and
HP SPP2000 parallel computers [9]. It is antic-
ipated that we can perform small to medium-
size ocean modeling applications on such a Be-
owulf cluster, which is complemented by the
commercial massively parallel computers for

large and extremely large sized (killer) applica-
tions. The objective of this arcticle is t o assess
the performance of our network and present
some performance comparison data with both
HP SPP2000 and Cray T3E using application
runs from our ocean model programs.

2 Setting up the Beowulf
Cluster

Documentation for setting up a Beowulf cluster
are widely available from various sources, and
our setup mainly followed that in the ”How to
Build a Beowulf, A Tutorial” [l] by P.Angelino
et al. All machine parts were ordered from
local commercial vendors and brought in t o
JPL for assembly. Most of the parts ordered
were identical to that specified in [l], with the
exception of ours having faster Pentium chip
(PI1 Celeron), more RAM memory (168mb),
larger disks (4.3 Gb), and different network
cards (Scorn 905B-TX Boomerang) and switch
(24 port SuperstackII 3300). We also have the
benefit of a newer version of the Linux o p
erating system (Redhat 5.0), which was pur-
chased with the Extreme Linux CDROM from
Redhat Systems for less than $30. Installa-
tion of the operating system on the main disk
went as planned, the machine booted up as ex-
pected. The first major problem encountered
was the discovery that the 3C905B network
card drivers were not available on the CDROM
distribution. A quick search thru the internet
led t o Donald Becker’s site at Goddard Space
Flight Center, who recently made available his
latest version (v0.99H) of the network driver
that does support this new card. It was now
a routine matter to compile this new driver,
and to install this as a module to the kernel.
A series of tweaks followed in order maximize
the network performance, and we found that
in order for the card to detect a 100mbs net-
work link, the following must be modified in
the 3c59x driver code:

{”lOObaseTX”, Media-Lnk, 0x02,
XCVR-lOObaseFx, (40*HZ)/10.}

where 14 was changed to 40,which allowed the
card a little more time to detect the default
link beat. The next major problem was how to
clone the first working system to the 12 others,
without having t o remove the hard drive and
do a dd each time, as done in [l]. A few hours
of research (again thru the internet) provided
us with the idea of using the Trinux (a diskless
version of Linux, residing completely in RAM
space) as a starting point for the cloning proce-
dure. The basic step of this process starts with
installation of the Trinux on the new machine
from a floppy drive, which included the drivers
for the SCSI disk and network card. After the
partitions were setup properly on the new ma-
chine, the network driver is loaded, and a T C P
connection is started with the machine t o be
cloned. The entire filesystem was then copied
with the cpio command. This method is defi-
nitely faster than using dd with large disks, as
cpio is quicker, and has the major advantage of
not having to disconnect the hard drives. With
all 13 systems up, connected, and running, the
last major task was to setup the automount
file sharing system. This proves to be routine,
as the documentation provided with the amd
software was sufficient.

The Extreme Linux CDROM comes with
both LAM and MPICH version of the MPI par-
allel programming model, and we decided to go
with the MPICH version, due to our previous
experience with this software. We downloaded
a later version (1.2) of MPICH from the Ar-
gonne National Labs website, and installed the
program. An f90 compiler was also needed for
compiling our ocean parallel programs, and the
Absoft f90 compiler was our choice.

3 Network Performance

We decided to first examine the network per-
formance of this machine, using a similar tests
as done in [a]. The Hyglac machine (JPL’s
first Beowulf, built at Caltech) network inter-
face cards (NICs) are D-link cards with Tulip
chipset, while we mentioned before that ours
are 3C905B-TX Boomerangs. Comparing the

1 ~ 1 102 103 lo4 lo5 lo6
Packet Size (bytes)

Figure 1: Sockets vs. MPI throughput perfor-
mance

results with those obtained in [a] with the JPL
Hyglac beowulf cluster (Figure l), the netperf
program for BSD socket tests showed that our
network has a higher throughput for packet
size of less than 512 bytes, and reaching close
to its peak rate by the time the packet size
hit 128 bytes. The peak rate of 9.87 Mbytes/s
however was significantly less than the 11.8
Mbytes/s observed with Hyglac network. For
MPI send and receive performance, ours show
slightly better rates for up to 4Kbytes packet
sizes, and at 64Kbytes and 128Kbytes packets.
There is a rather precipituous drop in perfor-
mance between 8Kbytes and 32Kbytes packet
sizes, and then moving back up to a peak rate
of 7.31 Mbytes/s for 256Kbytes packet, though
the range where this rate drop occurred at a
different location for the Hyglac network (be-
tween 32Kbytes and 128Kbytes), with maxi-
mum recorded rate of 8.3 Mbytes/s. Possible
causes of this rate drop are socket buffer size
and ethernet segment size [a], though the exact
cause has yet t o be determined. However, it is
clear at this point that it is dependent on the
type of NIC used. In summary, our machine
will perform better than Hyglac on programs
communicating with packets less than 1 Kbytes
in size.

4 Description of the Ocean
Model

The Ocean General Circulation Model
(OGCM) is based on the Parallel Ocean
Program (POP) developed at Los Alamos
National Laboratory [3]. This ocean model
evolved from the Bryan-Cox 3-dimensional
primitive equations ocean model [4,5], devel-
oped at NOAA Geophysical Fluid Dynamics
Laboratory (GFDL), and later known as the
Semtner and Chervin model or the Modular
Ocean Model (MOM) [6]. Currently, there
are hundreds of users within the so-called
Bryan-Cox ocean model family, making it the
dominant OGCM code in the climate research
community. Furthermore, this model has been
subjected to a high degree of optimization on
parallel machines over the last few years [7][8].

The OGCM solves the 3-dimensional primi-
tive equations with the finite difference tech-
nique. The equations are separated into
barotropic (the vertical mean) and baroclinic
(departures from the vertical mean) com-
ponents. The baroclinic component is 3-
dimensional, and uses explicit leapfrog time
stepping. It parallelizes very well on massively
parallel computers. The barotropic component
is 2-dimensional, and solved implicitly. It dif-
fers from the original Bryan-Cox formulation
in that it removes the rigid-lid approximation
and treats the sea surface height as a prog-
nostic variable (i.e., free-surface). The free-
surface model is superior to the rigid-lid model
because it provides more accurate solution to
the governing equations. More importantly,
the free-surface model tremendously reduces
the global communication otherwise required
by the rigid-lid model.

5 Results on the Beowulf
Cluster

At the core of our ocean model is the paral-
lel conjugate gradient solver code used to solve
the barotropic component of the model. We
are interested in the performance of this solver

code ,which comprises much of the computa-
tion and communication routines of the model,
on different parallel machines. Each of the ma-
chine compared to runs it's own implementa-
tion of the MPI message passing architecture.
The model grid size chosen for testing is a 2
degree x 1 degree global ocean model with 180
x 180 horizontal grid points and 20 vertical
levels. which is the largest size that can fit
in our Cray T3E memory for a two PE run.
The POP 2-dimensional solver code uses a 9
point stencil scheme with diagonal precondi-
tioning. The pperf package,which takes ad-
vantage of the special Model Specific Register
(MSR) of the Pentium processor, is used t o
obtain accurate time and floating point oper-
ations (FLOP) count for each iteration of the
solver. It usually takes several iterations for
the solver to complete one timestep of a model
run, i.e. for the solution t o converge. Perfor-
mance speed is defined as

FLOP per timestep
execution time per timestep

Speed =

and averaging this over the total number of
timesteps. To examine the differences in the
flop rate, we also looked at the ratio of compu-
tation to communication for the current prob-
lem grid size, shown below in column 3. Single
node performance results for the solver running
on two processors are as follows:

Machine

0.57 : 1 39.1 Exemplar
3.7 : 1 22.7 Cray T3E
3.25 : 1 11.9 Beowulf
Ratio Speed (Mflop/s)

Table 1: Solver performance

The HP Exemplar is an SPP2000 machine
powered by the PA 8000 RISC chip running
HPUX, with a peak flop rate of 720 Mflop/s.
Its processors are connected via a toroidal in-
terconnect, with a cache-coherent, nonuniform
memory-access (ccNUMA) architecture. On
the other hand, the T3E uses the DEC Alpha
chip and runs on UNICOSMK, with a peak

speed of 600 Mflop/s. The Alphas are con-
nected by a high-bandwidth, low-latency bidi-
rectional 3-D torus system interconnect net-
work. The best optimization flags available are
applied to the compiler for each of the above
machines. Because of the communication over-
heads, the net flop rate given above is lower
than the actual flop rate in accordance with
the amount of time spent doing the communi-
cations.

Given that the computation to communica-
tion ratio is about the same for the Beowulf
and the T3E, the Beowulf flop rate is close t o
what was expected with its peak flop rate of
about 300 Mflop/s, half that of the T3E. On
the other hand, It is notable that on the Ex-
emplar, the model spents more of its time on
communication relative to the other two ma-
chines, ,with the faster performance due to the
Exemplar's coherent memory caches (at least
within a hypernode). This explains why the
Exemplar flop rate is so much higher than ex-
pected from its peak flop rate, which is only
about 2.4 times faster than the Beowulf peak
flop rate. We also looked at the solver speedup
measurements for the above grid size, shown in
Figure 2, using the above two PE run as the
baseline.

t
/ i

L
t Beowulf
X Exemplar
0 T3E

i

Figure 2: Solver speedup comparison curves

From the figure, we see that the Beowulf

speedup is comparable to that of the T3E. The
Exemplar exhibits an interesting superlinear
speedup with the number of processors, which
we attribute to the intrahypernode memory
caching in communicating data. Overall, we
see that the Beowulf cluster performs favor-
ably in comparison, and cost about 10 times
less per node than each of other two machines.

Finally, t o convince ourselves and others
that an actual model run is feasible, we setup
an experiment with the P O P model, using re-
alistic topography and forcing the model with
real ocean wind, (from the European Centre for
Medium Range Weather Forecast (ECMWF),
salinity, and temperature (Levitus) data. The
model domain ranges from 100E to 130E and
0 t.0 30N (closed wall on all four sides), with a
resolution of 1/3 degree x 1/3 degree ,and 20
vertical levels. The sea level output at the end
of a 120-day run is shown in Figure 3.

Figure 3: Sea level output at end of 120-day
model run, with color scale ranging from purple
(lowest) t o pink (highest).

6 Conclusions

Beowulf class P C clusters are well suited for
ocean modeling applications, especially for
small t o medium sized problems. With the

current trends in P C pricing and CPU perfor-
mance, the Beowulf computing paradigm seem
destined only to grow in suitability. The at-
tractive price-to-performance ratio means such
machines are likely to be around for research
and many other non time-critical applications.
Another major advantage in favor of such a
cluster is the ability t o use it as a dedicated
machine without sharing computing resources
with many users, as is currently the case with
large expensive machines. Our PC cluster is
definitely not the best in quality that can be
assembled, but certainly qualifies as a one of
the least expensive (in the Los Angeles area),
if not the least expensive one in terms of per-
formance. It is not difficult t o imagine a pas-
sionate ocean modeler having a hard time de-
ciding whether to put a Honda or a Beowulf in
his/her own garage.

Acknowledgement

This work is performed at the Jet Propulsion
Laboratory, California Institute of Technology,
under contract with the National Aeronautics
and Space Agency.

References

[l] P. Angelino, C. Chapman, J. Lindheim,
J. Salmon, T. Sterling, D. Becker, and D.
Ridge. How t o build a Beowulf tutorial,
Cluster Computing Conference, CCC’97,
Atlanta, 1997.

[a] D. S. Katz, T. Cwik, B.H. Kwan, J . Z. Lou,
P.L. Springer, T. Sterling, and P. Wang. An
Assessment of a Beowulf system for a wide
class of analysis and design software. Adv.
in Eng. Software, 29(3-6):451-461, 1998.

[3] R.D. Smith, J.K. Dukowicz, and R.C. Mal-
one. Parallel Ocean General Circulation
Modeling. Physicu, 60:38-61, 1992.

[4] K. Bryan.Numerica1 Method for the Study
of the World Ocean Circulation. J. Comp.
Phy., 4~1687-1712, 1969.

[5] M.D. Cox. Primitive Equation, 3-
Dimensional Model of the Ocean. GFDL
Ocean Group Tech. Rep. 1, GFDL/NOAA,
Princeton, NJ, 1984.

[6] R. Pacanowski, R.K. Dixon, and A.
Rosati. Modular Ocean Model User’s
Guide. GFDL Ocean Group Tech. Rep. 2,
GFDL/NOAA, Princeton, NJ, 1992.

[7] P. Wang, D.S. Katz, and Y. Chao. Op-
timization of a Parallel OGCM, Proc. of
Supercomputing 97, San Jose, November
1997.

[8] Y. Chao, P. Li, P. Wang, D.S. Katz, and
B. N. Cheng. Ocean Modeling and Vi-
sualization on a Massively Parallel Com-
puter. Parallel Computing for Industrial
and Scientific Applications, Morgan Kauff-
man, 1999.

[9] P. Wang, B. N. Cheng, and Y. Chao. Cli-
mate Ocean Modeling. High Performance
Cluster Computing, Prentice Hall, 2000.

